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Abstract. The multiplicity of occurrence of the adjoint representation in the decomposition
of the square of any finite-dimensional irreducible representationλ of any compact simple Lie
group is shown to be equal to the number of non-vanishing components of the Dynkin label ofλ.
The resolution of this multiplicity into contributions to the symmetric and antisymmetric squares
of λ is discussed, with complete results being found for all of the classical and some of the
exceptional simple Lie groups, and partial results culminating in conjectures for the remaining
exceptional groups.

1. Introduction

The calculation of the matrix elements of the generators of a compact simple Lie groupG
when acting on states spanning a particular finite-dimensional irreducible representationλ of
G is a common problem in applications of Lie groups to physics (Judd 1963, Racah 1965).
The generators of the groupG transform as the adjoint irreducible representationθ of G.
A knowledge of the place ofθ in the Kronecker squareλ × λ of an arbitrary irreducible
representationλ is of significance in evaluating matrix elements of group generators. It is
well known, for example, that the eight-dimensional adjoint representationθ of the group
SU(3) occurs with multiplicity two in the Kronecker squareθ × θ . This is an important
feature of the quark model (Gell-Mann and Ne’eman 1964, Pais 1966).

Within this model couplings are further influenced by the fact that in the decomposition
of the Kronecker squareθ × θ into its symmetric and antisymmetric parts,θ ⊗ {2} and
θ ⊗ {12} respectively, the adjoint appears with multiplicity one in each part. However,
this equality of multiplicities of the adjointθ in the symmetric and antisymmetric parts of
the Kronecker square of an arbitrary finite-dimensional irreducible representationλ of an
arbitrary compact simple Lie groupG, while not being untypical in the case ofSU(k + 1),
is the exception rather than the rule for the other compact simple Lie groups. In many
instances the occurrence ofθ is confined to just one or other of these two parts.

Indeed this work arose from observations based on the resolution of Kronecker squares
of irreducible representations of the compact simple Lie groups into their symmetric and
antisymmetric parts using SCHUR†. The results obtained in this way led us to pose the
question: ‘When does the adjointθ occur only in the symmetric or only in the antisymmetric

† SCHUR is an interactive C package for calculating properties of Lie groups and symmetric functions. Distributed
by: S Christensen, PO Box 16175, Chapel Hill, NC 27516, USA. E-mail: steve@scm.vnet.net. A detailed
description can be seen by WEB users at http://scm.vnet.net/Christensen.html.
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part of the Kronecker square of a given irreducible representationλ of G?’. Herein we give
an answer to this question in the form of propositions coveringSU(k + 1), SO(2k + 1),
Sp(2k), SO(2k), E7 andG2, and conjectures covering the remaining cases,E6, E8 andF4.
At the same time we provide explicit formulae for the relevant multiplicities of occurrence
of the adjoint. Throughout we take advantage of the fact that the representation theory
of each compact simple Lie groupG is determined by that of the corresponding complex
simple Lie algebrag.

In section 2 the notation for irreducible representations and their characters is established,
while in section 3 some preliminary results are presented which follow from Weyl’s character
formula and the algebra of Schur functions. The multiplicity of occurrence of the adjoint
irreducible representationθ in the Kronecker squareλ × λ is determined in section 4 for
all irreducible representationsλ of each compact simple Lie groupG. In particular it
is shown that this multiplicity is non-vanishing if and only ifλ is both non-trivial and
selfcontragredient. The irreducible representations ofG which are selfcontragredient are
identified in section 5, and further classified as either orthogonal or symplectic. This
distinction is particularly important in determining the multiplicities of occurrence of the
adjoint irreducible representationθ in the symmetric and antisymmetric squares,λ ⊗ {2}
and λ ⊗ {12}, respectively. This determination is carried out forSU(k + 1) in section 6.
The remaining classical compact simple Lie groups ,SO(2k + 1), Sp(2k) andSO(2k) are
dealt with in section 7, while the exceptional simple Lie groups are covered in section 8.

2. Natural and Dynkin labels for irreducible representations

Each compact simple Lie groupG is associated with the unique compact real form of a
complex simple Lie algebrag, and their finite-dimensional irreducible representationsλ

are in one-to-one correspondence. Each of these irreducible representations is defined, up
to equivalence, by its highest weightλ. This highest weightλ can itself be specified in
more than one way, using for example, either Dynkin labels (Dynkin 1957, McKay and
Patera 1981) or natural labels involving partitions (Wybourne and Bowick 1977, King and
Al-Qubanchi 1981, Blacket al 1983). Of these the former have the advantage of allowing
all compact simple Lie groups to be dealt with in a uniform manner, while the latter are
particularly useful in dealing with the four infinite series of compact classical simple Lie
groups in a rank independent way.

Let g be the complex simple Lie algebra associated with the compact simple Lie group
G. Let h be the Cartan subalgebra ofg and leth∗ be the dual ofh. Let 1 and5 denote the
sets of roots and simple roots, respectively, ofg. For eachαi ∈ 5 let α∨

i = 2αi/(αi, αi),
where(· , ·) signifies the inner product onh∗.

Each finite-dimensional irreducible representationλ of g corresponds to a highest weight
moduleV λ and is specified up to equivalence by its highest weightλ. If g has rankk then
the corresponding Dynkin labels are given byai = (λ, α∨

i ) for i = 1, . . . , k. In the basis of
fundamental weights (Bremneret al 1985)ωi with (ωi, α

∨
j ) = δij for i, j = 1, 2, . . . , k, we

haveλ = ∑k
i=1 aiωi , and it is convenient to writeλ = (a1, a2, . . . , ak)). Of necessityλ is

dominant with each componentai a non-negative integer. A quantity of particular interest
in what follows is the number of non-vanishing Dynkin labelsai , which we refer to as the
breadth ofλ and denote byb(λ).

Alternatively we can make use of partitions to specify irreducible representations ofG.
Let λ = (λ1, λ2, . . . , λ`(λ)) signify a partition of length̀ (λ) and weightwλ. The partsλi

of λ for i = 1, 2, . . . , ` are positive integers, withλ1 > λ2 > · · · > λ`(λ) > 0, whose sum
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is wλ. Let the number of distinct parts ofλ be d(λ), a key parameter in what follows.
All the finite-dimensional irreducible representations of the classical and exceptional Lie

groupsG may be labelled by means of partitions (Wybourne and Bowick 1977, King and Al-
Qubanchi 1981, Blacket al 1983). This labelling is natural in the sense that it indicates the
tensor or spinor structure of corresponding modules ofG. The precise connection between
Dynkin labels and natural labels has been spelled out in detail by King and Al-Qubanchi
(1981), with a further refinement in the labelling being provided by Blacket al (1983). We
refer the reader to these papers for much of the notation employed here. This notation is
such that the representation labels are to be identified with characters of the corresponding
representations of bothG andg. In this way no distinction need, nor will be made between
characters ofG andg, although in general we choose to talk about characters or irreducible
representations ofG.

3. Preliminary lemmas

If we work in terms of natural labels involving partitions then the connection with
Schur functions provides a uniform framework in which to describe the decomposition
of Kronecker products of all irreducible representations of all the classical compact simple
Lie groups, independent of their rank (Blacket al 1983). At the heart of these methods
lies the fact that the characters of the irreducible representationsλ can all be expressed in
terms of Schur functions whose products and quotients are described by the Littlewood–
Richardson rule (Littlewood 1950, Macdonald 1995). As usual we denote Schur function
products and quotients by· and/, while symmetrized products or plethysms are denoted by
⊗. Recalling our definition ofd(λ) as the number of distinct parts of the partitionλ, the
following two lemmas then follow trivially from the properties of Schur functions:

Lemma 3.1. λ · 1 andλ/1 containd(λ) + 1 andd(λ) distinct terms, respectively.

Lemma 3.2. (λ/1) · 1 containsλ with multiplicity d(λ).

On the other hand if we work in terms of formal exponentials the key tool at our disposal
is Weyl’s character formula (Humphreys 1972):

ch V λ =
∑

w∈W ε(w) ew(λ+ρ)∑
w∈W ε(w) ew(ρ)

(3.1)

where the summations are over all elementsw of the Weyl groupW of g, ε(w) is the parity
or signature ofw, andρ is half the sum of the positive roots ofg. The Weyl groupW is
generated by the reflectionsri , with i = 1, . . . , k, whose action on any weightµ is defined
by ri(µ) = µ − (µ, α∨

i )αi . If w = ri1ri2 · · · rim thenε(w) = (−1)m. The expansion of (3.1)
in the form:

ch V λ =
∑
µ∈h∗

mλ
µ eµ (3.2)

serves to define the weightsµ of V λ and their multiplicitiesmλ
µ.

Weyl’s character formula (3.1) withλ replaced byµ also serves to define formal
charactersch V µ for any weightµ of any complex simple Lie algebrag of rank k whose
Weyl group isW . For such characters it is easy to derive from (3.1):

Lemma 3.3. ch V µ = ε(w)ch V w(µ+ρ)−ρ for any w ∈ W .
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Lemma 3.4. ch V µ = 0 if (µ, α∨
i ) = −1 for any i ∈ {1, . . . , k}.

The adjoint irreducible representationθ of each compact simple Lie groupG is identified
in table 1 in terms of both natural and Dynkin labels. This irreducible representationθ is
characterized by the fact that its weights coincide with the set1 of all rootsα of g, each
with multiplicity one, together with the zero vector with multiplicity equal to the rankk of
g. The expansion (3.2) of Weyl’s character formula for the adjoint irreducible representation
θ therefore takes the form:

ch V θ = k 1 +
∑
α∈1

eα = k 1 +
∑
α∈1

ew(α) for any w ∈ W (3.3)

where the last step depends on the fact that1 is invariant under the action of the Weyl
groupW .

Table 1. Natural and Dynkin labels for the adjoint irreducible representationθ of the compact
simple Lie groupsG of rank k.

G Adjoint irreducible representationθ Dynkin label((a1, a2, . . . , ak))

SU(k + 1) = Ak {1; 1} = {21k−1} ((1000· · · 000))
SO(2k + 1) = Bk [12] ((010· · · 000))
Sp(2k) = Ck 〈2〉 ((200· · · 000))
SO(2k) = Dk [12] ((010· · · 000))
E6 (2;0) ((000001))
E7 (216) ((1000000))
E8 (217) ((10000000))
F4 (12) ((1000))
G2 (21) ((10))

Turning, more generally, to arbitrary representations ofG, the symmetric, bilinear, inner
product〈 ·, ·〉 on the set of characters of equivalence classes of irreducible representations
of G is such that

ch V λ×µ = ch V λch V µ =
∑

ν

〈λ × µ, ν〉ch V ν (3.4)

where〈λ × µ, ν〉 is the multiplicity of occurrence of the irreducible representationν in the
Kronecker productλ × µ, and the sum is taken over all irreducible representationsν of G.

Here we are particularly interested in the decomposition of the Kronecker squareλ × λ

of an irreducible representationλ into its symmetric and antisymmmetric partsλ ⊗ {2} and
λ⊗{12}. If A andB denote arbitrary linear combinations of irreducible representations of a
compact simple Lie groupG, then the algebra of plethysms is such that (Littlewood 1950):

A × A = A ⊗ {2} + A ⊗ {12} (3.5)

(A + B) ⊗ {2} = A ⊗ {2} + A × B + B ⊗ {2} (3.6a)

(A + B) ⊗ {12} = A ⊗ {12} + A × B + B ⊗ {12} (3.6b)

(A × B) ⊗ {2} = (A ⊗ {2}) × (B ⊗ {2}) + (A ⊗ {12}) × (B ⊗ {12}) (3.7a)

(A × B) ⊗ {12} = (A ⊗ {2}) × (B ⊗ {12}) + (A ⊗ {12}) × (B ⊗ {2}). (3.7b)

It follows from (3.5) that the multiplicities of occurrence of the adjoint irreducible
representationθ in the Kronecker square, the symmetrized and the antisymmetrized squares
of an arbitrary irreducible representationλ of a simple Lie groupG are such that:

〈λ × λ, θ〉 = 〈λ ⊗ {2}, θ〉 + 〈λ ⊗ {12}, θ〉. (3.8)
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To every irreducible representationλ of a compact simple Lie groupG there corresponds
a contragredient or dual irreducible representationλ such that ifη denotes the trivial, identity,
one-dimensional irreducible representation ofG, then

〈λ × µ, η〉 = δµλ. (3.9)

An irreducible representationλ is said to be selfcontragredient ifλ = λ.
The contragredientλ of λ is characterized by the fact that the weights ofλ are equal

to the weights ofλ taken with opposite sign, but no change in multiplicity (Mal’cev 1962).
Clearly the adjoint irreducible representationθ is selfcontragredient since its only non-
vanishing weights are the rootsα ∈ 1, each having multiplicity one, andα ∈ 1 implies
−α ∈ 1.

More generally, all the irreducible representationsλ of SO(2k + 1), Sp(2k), SO(2k)

with k even, E7, E8, F4 and G2 are selfcontragredient so thatλ = λ. In the case of
SU(k + 1), SO(2k) with k odd, andE6 the irreducible representationsλ contragredient to
λ are given in table 2 in terms of both natural and Dynkin labels.

Table 2. The irreducible representationλ contragredient to each irreducible representation
λ = ((a1, . . . , ak)) of SU(k + 1), SO(2k) with k odd, andE6.

G λ λ ((a1, a2, . . . , ak−1, ak))

SU(k + 1) = Ak {λ} {λ} with λ1 = λ1 and ((ak, ak−1, . . . , a2, a1))

λi = λ1 − λk−i+2 for
i = 2, . . . , k

SO(2k) [λ]± [λ]∓ ((a1, . . . , ak−2, ak, ak−1))

with k odd [1; λ]± [1; λ]∓
E6 (λ0, λ) (λ0, λ) with λ1 = λ1 and ((a5, a4, a3, a2, a1, a6))

λi = λ1 − λ7−i for
i = 2, . . . , 5

An alternative characterization of selfcontragredient irreducible representations ofG is
provided by the following proposition which follows immediately from (3.9):

Proposition 3.5. The irreducible representationλ of a compact simple Lie groupG is
selfcontragredient if and only if〈λ × λ, η〉 = 1, whereη is the identity representation ofG.

If an irreducible representationλ of a compact simple Lie groupG is not
selfcontragredient then its character is complex. In the case of a selfcontragredient
irreducible representationλ the character is real, and the representation matrices themselves
are either orthogonal or symplectic according as their Kronecker square supports a symmetric
or an antisymmetric bilinear form. More precisely, bearing in mind (3.5) and Proposition
3.5 which imply that there are indeed only two possibilities, we have:

Proposition 3.6. A selfcontragredient irreducible representationλ of a compact simple Lie
groupG is orthogonal if〈λ ⊗ {2}, η〉 = 1 and is symplectic if〈λ ⊗ {12}, η〉 = 1, whereη is
the identity irreducible representation ofG.

The identification of orthogonal and symplectic irreducible representations for all the
compact simple Lie groups is well known (Dynkin 1957, Mal’cev 1962, Mehta 1966,
Mehta and Srivastava 1966, Butler and King 1974, McKay and Patera 1981). The data are
summarized in tables 3 and 4 in terms of natural and Dynkin labels, respectively.
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Table 3. Orthogonal and symplectic irreducible representationsλ of the Lie groupG of rank k

in terms of natural labels.

G Selfcontragredientλ Orthogonal Symplectic

SU(k + 1) {λ} with λi = λ1−λk−i+2 k = 0, 2, 3(mod 4)
for 2 6 i 6 [(k + 1)/2] k = 1(mod 4), λ1 = 0(mod 2) k = 1(mod 4), λ1 = 1(mod 2)

SO(2k + 1) [λ] all
[1; λ] k = 0, 3(mod 4) k = 1, 2(mod 4)

Sp(2k) 〈λ〉 wλ = 0(mod 2) wλ = 1(mod 2)
SO(2k) [λ] all

[λ]± k = 0(mod 2) all selfcontragredient
[1; λ]± k = 0(mod 2) k = 0(mod 4) k = 2(mod 4)

G2 (λ) all
F4 (λ) all

(1; λ) all
E6 (λ0; λ) with all selfcontragredient

λ1 = λ2 + λ5 = λ3 + λ4

E7 (λ) wλ = 0(mod 4) wλ = 2(mod 4)
E8 (λ) all

Table 4. Orthogonal and symplectic irreducible representationsλ = ((a1, . . . , ak)) of the Lie
groupG of rank k in terms of Dynkin labels.

G Selfcontragredientλ Orthogonal Symplectic

SU(k + 1) ai = ak−i+1 k = 0, 2, 3(mod 4)
for i = 1, . . . , [k/2] a[(k+1)/2] = 0(mod 2) k = 1(mod 4) a[(k+1)/2] = 1(mod 2) k = 1(mod 4)

SO(2k + 1) all ak = 0(mod 2) all k

ak = 1(mod 2) k = 0, 3(mod 4) ak = 1(mod 2) k = 1, 2(mod 4)
Sp(2k) all a1 + a3 + a5 + · · · = 0(mod 2) a1 + a3 + a5 + · · · = 1(mod 2)
SO(2k) k = 0(mod 4) all all

k = 1, 3(mod 4) ak−1 = ak all selfcontragredient
k = 2(mod 4) all ak−1 + ak = 0(mod 2) ak−1 + ak = 1(mod 2)

G2 all all
F4 all all
E6 a1 = a5, a2 = a4 all selfcontragredient
E7 all a4 + a6 + a7 = 0(mod 2) a4 + a6 + a7 = 1(mod 2)
E8 all all

The following lemmas regarding arbitrary irreducible representationsλ, µ and ν of a
simple Lie groupG whose adjoint irreducible representation isθ may be readily derived
and are of considerable use in what follows:

Lemma 3.7. 〈λ × µ, ν〉 = 〈λ × ν, µ〉.

Lemma 3.8. 〈λ × λ, θ〉 = 〈λ × θ, λ〉.

For the record it should also be noted that an inspection of the tabulation of rootsα ∈ 1

of each simple Lie groupG in the basis of fundamental weightsωi given by Bremneret al
(1985) reveals that for the highest weightλ of any irreducible representation ofG:

Lemma 3.9. λ + α 6= λ for any α ∈ 1.
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4. Kronecker squares

We are interested in the multiplicity of occurrence of the adjoint irreducible representation
θ in the Kronecker squareλ × λ of each finite-dimensional irreducible representationλ of
each compact simple Lie groupG. From lemma 3.8 the required multiplicity is that ofλ in
the Kronecker productλ × θ .

However, from (3.1) and (3.3)

ch V λch V θ = kch V λ +
∑
α∈1

∑
w∈W ε(w) ew(λ+ρ+α)∑

w∈W ε(w) ew(ρ)

= kch V λ +
∑
α∈1

ch V λ+α (4.1)

whereλ + α may or may not be dominant. There are three cases to consider:
(i) if λ + α is dominant there is no problem sincech V λ+α is standard;
(ii) if λ+α is not dominant but there exists anyi ∈ {1, . . . , k} such that(λ+α, α∨

i ) = −1
thench V λ+α = 0 by virtue of lemma 3.4. In such a case we say thatλ + α is null;

(iii) if λ + α is not dominant and not null then there existsi ∈ {1, . . . , k} such that
(λ+α, α∨

i ) 6 −2 and the corresponding contributionch V λ+α to (4.1) must be standardized
through the use of lemma 3.3.

For example, ifα = −αi for somei ∈ {1, . . . , k} then(λ+α, α∨
i ) = (λ−αi, α

∨
i ) = ai−2

and (λ + α, α∨
j ) = (λ − αi, α

∨
j ) = aj − (αi, α

∨
j ) > aj > 0 for all j 6= i. It follows that

λ−αi is dominant ifai > 2 and null ifai = 1, but is non-dominant and non-null ifai = 0.
However, ifai = 0 we have

ri(λ − αi + ρ) − ρ = λ − αi − (λ − αi + ρ, α∨
i )αi = λ − aiαi = λ (4.2)

since(ρ, α∨
i ) = 1 for all i − 1, 2, . . . , k. It then follows from lemma 3.3 withw = ri that

ch V λ−αi = −ch V λ if ai = 0. (4.3)

More generally, in case (iii) sinceλ is dominant with (λ, α∨
i ) = ai > 0 for all

i ∈ {1, . . . , k}, there must existi ∈ {1, . . . , k} such that(α, α∨
i ) = −p with p > ai +2 > 2.

However,(α, β∨) ∈ {0, ±1, ±2, ±3} for all β ∈ 1 (Humphreys 1972), so there are just two
possibilities, namelyp = 2 andp = 3, with the latter only occurring in the caseG = G2.
Moreover, an examination of the tables of Bremneret al (1985) shows that for any given
α ∈ 1 if (α, α∨

i ) = −p for somei ∈ {1, . . . , k} with p = 2 or 3 then that value ofi is
unique. We can distinguish between the two possibilities: (a)α = −αi and (b)α 6= −αi .
The first of these has already been dealt with. In fact it is the only possibility for each of
the simply laced algebrasAk, Dk, E6, E7 andE8.

Turning to case (b), ifα 6= −αi then α is not a multiple ofαi since the only other
possibility is α = +αi in which case(α, α∨

i ) = −p = 2, in contradiction with the
requirement thatp = 2 or 3. However, ifα is not a multiple ofαi , then

ri(α) = α − (α, α∨
i )αi = α + pαi (4.4)

and there necessarily exists a chain of rootsα + rαi with r = 0, 1, . . . , p (Humphreys
1972). In addition,

ri(λ + α + ρ) − ρ = λ + α − (λ + α + ρ, α∨
i )αi = λ + α − (ai − p + 1)αi = λ + β (4.5)

whereβ = α + qαi with q = p − 1 − ai . Recalling thatp > ai + 2 andai > 0 it follows
that 16 q < p, so thatβ is necessarily a root. Thus, from (4.5) and lemma 3.3

ch V λ+α = −ch V λ+β with β = α + qαi ∈ 1 (4.6)



5066 R C King and B G Wybourne

and we have a cancellation of contributions to (4.1) of the terms arising fromα ∈ 1 and
β ∈ 1. To be sure that this is the end of the story we have to be sure that all theβ obtained
by means of (4.5) from differentα are distinct.

It is to be noted that having identified all relevantα and i from the tables of Bremner
et al (1985), thenβ = α + qαi with q restricted to be 1 or 2. In fact ifp = 2 then the
condition p > ai + 2 > 2 implies thatai = 0 so thatq = 1. For the non-simply laced
algebrasBk, Ck, F4 andG2, this covers all possibilities except in the case ofG2 for which
it is necessary to considerp = 3. In this case we have eitherai = 1 so thatq = 1 as
before, orai = 0 so thatq = 2. Again consulting the tables of Bremneret al (1985) to
obtain the list of rootsβ = α + qαi , it is indeed found in every case that theβ arising from
different α are distinct. Moreover in every case(β, α∨

j ) ∈ {0, ±1} for all j ∈ {1, . . . , k}
so thatλ + β is either dominant or null. In all cases we therefore have the cancellation of
contributions to (4.1) implied by (4.6), although in some cases these contributions are in
fact null.

Applying (4.3) and (4.6) to (4.1), together with the observations made regarding cases
(i) and (ii), we have the following:

Proposition 4.1. Let λ be any finite-dimensional irreducible representation of a compact
simple Lie groupG whose adjoint irreducible representation isθ , and letb(λ) be the number
of non-vanishing components of the Dynkin labelλ = ((a1, . . . , ak)). Then

ch V λch V θ = b(λ)ch V λ +
∑
α∈1λ

ch V λ+α

where1λ is the set of rootsα ∈ 1 such thatλ + α is dominant, and there exists noβ ∈ 1

such thatri(λ + β + ρ) = λ + α + ρ for any i ∈ {1, . . . , k}.

Thanks to lemmas 3.8 and 3.9 this immediately gives us one of our key results:

Proposition 4.2. For any compact simple Lie groupG, the multiplicity of occurrence of
the adjoint irreducible representationθ in the Kronecker square of any finite-dimensional
irreducible representationλ is non-zero if and only ifλ is selfcontragredient. Ifλ is
selfcontragredient this multiplicity is given by〈λ× λ, θ〉 = b(λ), whereb(λ) is the number
of non-vanishing components of the Dynkin labelλ = ((a1, . . . , ak)).

The above proposition was stated earlier by Elashvili (1992) but he provided only a
partial proof of its validity. In particular he gave no justification of the fact that〈λ × λ, θ〉
is equal tob(λ).

5. Symmetrized Kronecker squares forSU (k + 1)

While the results of section 4 embodied in propositions 4.1 and 4.2 are completely general
in the sense that they apply to any compact simple Lie groupG, it is worth pointing out
that the same results may be derived rather easily using Schur function methods in the case
of SU(k + 1).

In terms of natural labels an arbitrary finite-dimensional irreducible representation is
denoted by{λ}, where λ is a partition of length̀ (λ) 6 k, and the adjoint irreducible
representation is given byθ = {21k−1}. The Kronecker product{λ} × {21k−1} may be
evaluated quite readily through the use of the Littlewood–Richardson rule (Littlewood 1950,
Macdonald 1995). However, it is advantageous to make use of the freedom associated
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with the constraintx1x2 · · · xk+1 = 1, which applies to all Schur functions corresponding
to characters ofSU(k + 1), to expressθ = {21k−1} in the form {1; 1}. This composite
partition notation emphasizes the fact that the adjoint irreducible representationθ = {1; 1}
of SU(k + 1) appears in the decomposition of the Kronecker product of the defining,
fundamental irreducible representationω1 = {1} and its contragredientωk = {1k} = {1}.
This product takes the form:

{1} × {1} = {1; 1} + {0}. (5.1)

With this notation (Blacket al 1983), the Kronecker product of an arbitrary irreducible
representation{λ} of SU(k + 1) with the adjoint irreducible representation decomposes in
accordance with the formula

{λ} × {1; 1} = {1; λ · 1} + {(λ/1) · 1}. (5.2)

In general modification rules (Blacket al 1983) may have to be brought into play. However,
since`(λ) 6 k all terms in (5.2) are standard except the term{1; λ, 1} if `(λ) = k, and in
such a case{1; λ, 1} is identically zero.

It then follows from lemma 3.2 that the multiplicity of{λ} in the Kronecker product
(5.2) is given by:

〈{λ} × θ, {λ}〉 = d(λ). (5.3)

Lemma 3.5 then implies that if{λ} is selfcontragredient then

〈{λ} × {λ}, θ〉 = d(λ). (5.4)

That this is in agreement with proposition 4.2 may be seen by noting (King and Al-Qubanchi
1981) thatai = λi −λi+1 for i = 1, . . . , k andak = λk. Hence the number of non-vanishing
components of the Dynkin label((a1, . . . , ak)) coincides with the number of distinct parts
of the partition(λ1, . . . , λ`(λ)) with `(λ) 6 k − 1, that isb(λ) = d(λ).

Turning now to symmetrized squares, the algebra of Schur functions is such that:

{λ} × {λ} = {λ} ⊗ p2
1 = {λ} ⊗ {2} + {λ} ⊗ {12} (5.5a)

{λ} ⊗ p2 = {λ} ⊗ {2} − {λ} ⊗ {12} (5.5b)

wherep1 andp2 are power sum functions (Littlewood 1950, Macdonald 1995). Thus if{λ}
is selfcontragredient

〈{λ} ⊗ {2}, θ〉 = 1
2(d(λ) + 〈{λ} ⊗ p2, θ〉) (5.6a)

〈{λ} ⊗ {12}, θ〉 = 1
2(d(λ) − 〈{λ} ⊗ p2, θ〉) (5.6b)

where it is now appropriate to make use of the freedom in the choice of Schur functions
corresponding to characters ofSU(k + 1) to takeθ = {θλ}, with the partitionθλ defined by
θλ = (λ1 + 1, λk−1

1 , λ1 − 1). This ensures that for any selfcontragredient{λ}, for which λ

necessarily has weightwλ = 1
2(k + 1)λ1, the Kronecker square{λ} × {λ} = {λ · λ} contains

{θλ} with θλ of weight (k + 1)λ1, without the necessity of modification.
A very efficient method of evaluating{λ}⊗pr has been provided by Littlewood (1951)

for any positive integerr. This involves the notions ofr-core (or r-residue),r-sign and
r-quotient of an arbitrary partitionµ. In the caser = 2 Littlewood’s key theorem implies
(Carŕe and Leclerc 1995, Yang and Wybourne 1995) the following:
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Lemma 5.1. Let the 2-core ofµ be µ̂, let the 2-sign ofµ be sign(µ), and let the 2-quotient
of µ be sign(µ)µ(0)µ(1), then

〈{λ} ⊗ p2, {µ}〉 = εµ〈{µ(0)} · {µ(1)}, {λ}〉 (5.7)

where if µ̂ 6= 0 thenεµ = 0, while if µ̂ = 0 thenεµ = ±1 according as the sign(µ) = ±.
In the case of interest, namelyµ = θ = θλ, we have the following (Yang and Wybourne

1995).

Proposition 5.2. For λ1 > 1 let θλ = (λ1 + 1, λk−1
1 , λ1 − 1). Then

εθλ
=


0 if k = 0, 2(mod 4)

−1 if k = 3(mod 4)

−(−1)λ1 if k = 1(mod 4)

(5.8)

while for k odd andλ1 even

{θ(0)
λ } =

{(
λ1 + 2

2

)(k+1)/2}
and {θ(1)

λ } =
{(

λ1 − 2

2

)(k+1)/2}
(5.9a)

and fork odd andλ1 odd

{θ(0)
λ } =

{(
λ1 − 1

2

)(k+1)/2}
and {θ(1)

λ } =
{(

λ1 + 1

2

)(k+1)/2}
. (5.9b)

It is particularly noteworthy that the partitionsθ(0)
λ andθ

(1)
λ are rectangular in that they define

rectangular Young diagrams. This ensures that the 2-quotients are easy to write down since
for any pair of such partitionsα = (ap) andβ = (bq), with a > b andp > q, we have

{α} × {β} = {(ap) · (bq)} =
∑

γ

{(α + γ, β/γ )} (5.10)

where the summation is over all those partitionsγ such thatγ1 6 b and`(γ ) 6 q. Moreover
the quotientβ/γ consists of a single termδ whose parts are given byδr = b − γq−r+1 for
r = 1, . . . , q, and the multiplicity of each term{ν} = {(α + γ, δ)} in (5.10) is just one.

To evaluate{θ(0)
λ }·{θ(0)

λ } using (5.10) we choose, fork odd andλ1 even,α = (ap) = θ
(0)
λ

andβ = (bq) = θ
(1)
λ with θ

(0)
λ and θ

(1)
λ defined by (5.9a), while for k odd andλ1 odd we

chooseα = (ap) = θ
(1)
λ and β = (bq) = θ

(0)
λ , with θ

(0)
λ and θ

(1)
λ now defined by (5.9b).

In both cases we havea + b = λ1 andp = q = 1
2(k + 1). If we setν = (α + γ, δ) with

δ = β/γ , thenνi + νk−i+2 = νi + ν2p−i+1 = a +γi + δp−i+1 = a +γi +b −γi = a +b = λ1

for i = 1, . . . , (k + 1)/2. This implies that the corresponding irreducible representation{ν}
of SU(k + 1) is necessarily selfcontragredient. Moreover its multiplicity in{θ(0)

λ } · {θ(1)
λ } is

one.
In fact this product contains almost all selfcontragredient irreducible representations{λ}

with `(λ) 6 k for k odd and fixedλ1. This can be seen by noting that fork odd the
conditions that ensure{λ} is a selfcontragredient irreducible representation ofSU(k + 1)

given in table 4 imply thatλ is of the form (α + γ, δ) with δ = β/γ , whereα = (ap)

and β = (bq) with p = q = 1
2(k + 1), a + b = λ1 and a = [(λ1 + 1)/2]. If λ1 is

odd this set of all selfcontragredient irreducible representations{λ} coincides with the set
of all {ν} obtained previously from (5.10) with parameters determined by (5.9b) so that
a = (λ1 + 1)/2. However, ifλ1 is even the set of all{ν} obtained previously from (5.10)
with parameters determined by (5.9a) is such thata = (λ1 + 2)/2 rather thanλ1/2 as
required to exhaust all possible selfcontragredient irreducible representations{λ} with λ1

even. The only selfcontragredient irreducible representations{λ} missing from{θ(0)
λ } · {θ(1)

λ }
are therefore those for whichλ1 is even andλ(k+1)/2 = 1

2λ1.
These remarks taken in conjunction with lemma 5.1 then imply:
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Proposition 5.3. For λ1 > 1 let θλ = (λ1 + 1, λk−1
1 , λ1 − 1). Then the irreducible

representations{λ} and {θλ} of SU(k + 1) are such that〈{λ} ⊗ p2, {θλ}〉 is zero unless
{λ} is selfcontragredient,k is odd, andλ(k+1)/2 6= 1

2λ1. If these three conditions are satisfied
then

〈{λ} ⊗ p2, {θλ}〉 =


−1 if k = 1(mod 4), λ1 = 0(mod 2)

or if k = 3(mod 4)

1 if k = 1(mod 4), λ1 = 1(mod 2).

(5.11)

This in turn allows us to conclude the validity of the following result which in the
case of SU(k + 1) adds very significantly to proposition 4.2 by specifying precisely
how the b(λ) copies of the adjoint irreducible representationθ are distributed between
the symmetric and antisymmetric parts of the Kronecker square of a selfcontragredient
irreducible representation{λ}. It should be noted thatb({λ}) = d(λ), the number of distinct
parts of the partitionλ.

Proposition 5.4. Let {λ} and θ be an arbitrary finite-dimensional selfcontragredient
irreducible representation and the adjoint irreducible representation, respectively, ofSU(k+
1). Then

〈{λ} ⊗ {2}, θ〉 =


1
2d(λ) if d(λ) is even
1
2(d(λ) − 1) if d(λ) is odd and{λ} is orthogonal
1
2(d(λ) + 1) if d(λ) is odd and{λ} is symplectic

〈{λ} ⊗ {12}, θ〉 =


1
2d(λ) if d(λ) is even
1
2(d(λ) + 1) if d(λ) is odd and{λ} is orthogonal
1
2(d(λ) − 1) if d(λ) is odd and{λ} is symplectic.

Proof. If {λ} is selfcontragredient butk is even then from table 5 it is clear thatd(λ) is
even. In addition if{λ} is selfcontragredient andk is odd butλ(k+1)/2 = 1

2λ1 with λ1 even,
then from the conditions of table 4 we must also haveλ(k+3)/2 = 1

2λ1 so thata(k+1)/2 = 0.
Remembering that{λ} is selfcontragredient, this implies once more thatd(λ) is even. It
therefore follows from proposition 5.3 that〈{λ} ⊗ p2, {θλ}〉 is non-zero if and only ifd(λ)

is odd. Moreover the conditions appearing in (5.11) are precisely those appropriate to
distinguish between orthogonal and symplectic irreducible representation{λ} as spelled out
in table 5. Proposition 5.4 then follows from the application of proposition 5.3 to (5.6a)
and (5.6b).

A related approach to the derivation of proposition 5.4 has been given by Yang and
Wybourne (Yang and Wybourne 1995), who did not, however, make the connection with
the evenness or oddness ofd(λ) and the orthogonal or symplectic nature of{λ}. While Carre
and Leclerc (1995) have derived a combinatorial algorithm for the complete resolution of
the symmetric and antisymmetric squares of any irreducible representationλ, this algorithm
does not appear to provide any way of arriving at proposition 5.4, or indeed its precursor
Proposition 5.3, which is as simple as the use of proposition 5.2 and the exploitation of
(5.10). �

6. Symmetrized Kronecker squares forSO(2k + 1), Sp(2k) and SO(2k)

For the classical compact simple Lie groups other thanSU(k + 1) it is convenient to adopt
a completely different approach. This is motivated by the fact that in numerous examples it
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has been found that the occurrence of the ajoint irreducible representationθ in the symmetric
and antisymmetric squares of a given irreducible representationλ has been confined to one
or other of these two parts, but not both. We concentrate therefore on establishing that
the multiplicity of θ in one or other ofλ ⊗ {2} and λ ⊗ {12} is zero for an arbitrary
selfcontragredient irreducible representationλ.

For any such irreducible representationλ the starting point is somewhat surprisingly the
consideration of the Kronecker productλ × ω, where for each of the groupsSO(2k + 1),
Sp(2k) and SO(2k) we takeω = ω1, the appropriate defining irreducible representation
given in terms of natural labels by [1],〈1〉 and [1], respectively. The relevant products
with λ may be evaluated either through the use of Weyl’s character formula forch V λ and
a knowledge of the weights ofω, or by means of Schur function techniques (Kinget al
1981, Blacket al 1983). We obtain using the latter the results of table 5.

Table 5. The Schur function decomposition of Kronecker products of the formλ × ω for
SO(2k + 1), Sp(2k) andSO(2k).

G λ × ω Constraints

SO(2k + 1) [λ] × [1] = [λ · 1] + [λ/1] `(λ) 6 k

with [λ, 1] = [λ] if `(λ) = k

[1; λ] × [1] = [1; λ · 1] + [1; λ] + [1; λ/1] `(λ) 6 k

with [1; λ, 1] = 0 if `(λ) = k

Sp(2k) 〈λ〉 × 〈1〉 = 〈λ · 1〉 + 〈λ/1〉 `(λ) 6 k

with 〈λ, 1〉 = 0 if `(λ) = k

SO(2k) [λ] × [1] = [λ · 1] + [λ/1] `(λ) < k

with [λ, 1] = [λ, 1]+ + [λ, 1]− if `(λ) = k − 1
[λ]± × [1] = [λ · 1]± + [λ/1]± `(λ) = k

with [λ, 1]± = 0 and [µ]± = [µ] if `(µ) < k

[1; λ]± × [1] = [1; λ · 1]± + [1; λ]∓ + [1; λ/1]± `(λ) 6 k

with [1; λ, 1]± = [1; λ]∓ = 0 if `(λ) = k

The single most notable thing about these results is that all the products are multiplicity
free as a consequence of lemma 3.1 and the fact that all the terms inλ · 1, λ and λ/1
are specified by partitions of weightwλ + 1, wλ andwλ − 1, respectively. This conclusion
remains valid even in those special cases for which it is necessary to invoke the modification
rules included in table 6.

With the exception of the caseSO(2k) with k odd all the irreducible representations
appearing as constituents of each productλ × ω are selfcontragredient. In this exceptional
case we can of course restrict ourselves to the product [λ] × [1] with `(λ) < k since
both [λ]± and [1; λ]± are not selfcontragredient, as made clear in table 3. However,
if `(λ) = k − 1 then the product [λ] × [1] contains the pair of mutually contragredient
irreducible representations [λ, 1]+ and [λ, 1]−. It is therefore necessary to excludeSO(2k)

with k odd from the following lemma.

Lemma 6.1. In the case ofSO(2k + 1), Sp(2k) andSO(2k) with k even:
(i) the Kronecker productλ × ω of an arbitrary irreducible representationλ and the

defining irreducible representationω decomposes into a direct sumµ+ν+· · · + of mutually
distinct, selfcontragredient irreducible representations;

(ii) these irreducible representationsµ, ν, . . . are all orthogonal ifλ and ω are either
both orthogonal or both symplectic, and are all symplectic ifλ is orthogonal andω is
symplectic or vice versa;
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(iii) the multiplicity of occurrence of the identity irreducible representationη in the
symmetric and antisymmetric square ofλ × ω is such that:

〈(λ × ω) ⊗ {12}, η〉 = 0 if

{
λ andω are both orthogonal, or (6.1b)

λ andω are both symplectic (6.1b)

〈(λ × ω) ⊗ {2}, η〉 = 0 if

{
λ is orthogonal andω is symplectic, or (6.1c)

λ is symplectic andω is orthogonal. (6.1d)

Proof. Part (i) follows from our previous remarks, while part (ii) is an immediate
consequence of the work of Mal’cev (1962), see also Adams (1969), applied to products
in which the irreducible constituents are selfcontragredient and distinct. In part (iii) it then
follows that if, for example,λ andω are both orthogonal, then from (3.7b)

〈(λ × ω) ⊗ {12}, η〉 = 〈(µ + ν + · · ·) ⊗ {12}, η〉
= 〈µ ⊗ {12}, η〉 + 〈ν ⊗ {12}, η〉 + · · · + 〈µ × ν, η〉 + · · · . (6.2)

However, sinceµ, ν, . . . are all distinct, selfcontragredient, orthogonal irreducible
representations, then〈µ ⊗ {12}, η〉 = 〈ν ⊗ {12}, η〉 = cdots = 0 from propositions 5.1
and 5.2, and〈µ × ν, η〉 = · · · = 0 from (3.9). Thus all terms contributing to (6.2) are
identically zero and the result (6.1a) follows. The results (6.1b), (6.1c) and (6.1d) can all
be proved in the same way. �

This leads inexorably to the following result:

Proposition 6.2. If λ is an arbitrary irreducible representation ofSO(2k + 1) or SO(2k)

with k even, then

〈(λ ⊗ {2}), [12]〉 = 〈(λ ⊗ {12}), [2]〉 = 0 if λ is orthogonal (6.3a)

〈(λ ⊗ {12}), [12]〉 = 〈(λ ⊗ {2}), [2]〉 = 0 if λ is symplectic. (6.3b)

If λ is an arbitrary irreducible representation ofSp(2k), then

〈(λ ⊗ {2}), 〈2〉〉 = 〈(λ ⊗ {12}), 〈12〉〉 = 0 if λ is orthogonal (6.4a)

〈(λ ⊗ {12}), 〈2〉〉 = 〈(λ ⊗ {2}), 〈12〉〉 = 0 if λ is symplectic. (6.4b)

Proof. In the case ofSO(2k + 1) or SO(2k) with k even the defining irreducible
representationω = [1] is orthogonal. Let the irreducible representationλ also be orthogonal
in accordance with case (6.1a). From (3.7b) we have

〈(λ × [1]) ⊗ {12}, η〉 = 〈(λ ⊗ {12}) × ([1] ⊗ {2}), η〉 + 〈(λ ⊗ {2}) × ([1] ⊗ {12}), η〉
= 〈(λ ⊗ {12}) × ([0] + [2]), η〉 + 〈(λ ⊗ {2}) × ([12]), η〉
= 〈λ ⊗ {12}, [0]〉 + 〈λ ⊗ {12}, [2]〉 + 〈λ ⊗ {2}, [12]〉 (6.5)

where use has been made of the decompositions [1]⊗{2} = [0]+[2] and [1]⊗{12} = [12]. As
we are assuming that the irreducible representationλ is orthogonal then〈λ⊗{12}, [0]〉 = 0.
However, the left-hand side of (6.5) vanishes identically by (6.1a) so that all terms on the
right must be zero, giving (6.3a) as required. The result (6.3b) may be derived in the
same way, making use this time of (3.7a). Similarly if λ is an irreducible representation of
Sp(2k) andω = 〈1〉 both (6.4a) and (6.4b) may be derived in the same way using (3.7a)
or (3.7b) as appropriate, along with〈1〉 ⊗ {2} = 〈2〉 and〈1〉 ⊗ {12} = 〈0〉 + 〈12〉. �
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Recalling the result〈λ×λ, θ〉 = b(λ) from proposition 4.2 and the relationship between
b((a1, . . . , ak)) andd(λ) implied by the connection between Dynkin and natural labels, we
can summarize our results as follows.

Proposition 6.3. The multiplicities of the adjoint irreducible representationθ = [12] in the
symmetric and antisymmetric squares of the irreducible representations [λ] and [1; λ] of
SO(2k + 1) are given by:

〈[λ] ⊗ {2}, [12]〉 = 0 and 〈[λ] ⊗ {12}, [12]〉 = d(λ) (6.6a)

and

〈[1; λ] ⊗ {2}, [12]〉 =


0 if [1; λ] is orthogonal

d(λ) + 1 if [1; λ] is symplectic and̀ (λ) < k

d(λ) if [ 1; λ] is symplectic and̀ (λ) = k

(6.6b)

〈[1; λ] ⊗ {12}, [12]〉 =


d(λ) + 1 if [1; λ] is orthogonal and̀ (λ) < k

d(λ) if [ 1; λ] is orthogonal and̀ (λ) = k

0 if [1; λ] is symplectic.

(6.6c)

Proposition 6.4. The multiplicities of the adjoint irreducible representationθ = 〈2〉 in the
symmetric and antisymmetric squares of the irreducible representations〈λ〉 of Sp(2k) are
given by:

〈〈λ〉 ⊗ {2}, 〈2〉〉 =
{

0 if 〈λ〉 is orthogonal

d(λ) if 〈λ〉 is symplectic
(6.7a)

〈〈λ〉 ⊗ {12}, 〈2〉〉 =
{

d(λ) if 〈λ〉 is orthogonal

0 if 〈λ〉 is symplectic.
(6.7b)

Proposition 6.5. The multiplicities of the adjoint irreducible representationθ = [12] in
the symmetric and antisymmetric squares of the irreducible representations [λ], [λ]± and
[1; λ]± of SO(2k) with k even are given by:

〈[λ] ⊗ {2}, [12]〉 = 0 and 〈[λ] ⊗ {12}, [12]〉 = d(λ) for `(λ) < k (6.8a)

〈[λ]± ⊗ {2}, [12]〉 = 0 and 〈[λ]± ⊗ {12}, [12]〉 = d(λ) for `(λ) = k (6.8b)

and

〈[1; λ]± ⊗ {2}, [12]〉 =


0 if [1; λ]± is orthogonal

d(λ) + 1 if [1; λ]± is symplectic and̀ (λ) < k

d(λ) if [ 1; λ]± is symplectic and̀ (λ) = k

(6.8c)

〈[1; λ]± ⊗ {12}, [12]〉 =


d(λ) + 1 if [1; λ]± is orthogonal and̀ (λ) < k

d(λ) if [ 1; λ]± is orthogonal and̀ (λ) = k

0 if [1; λ]± is symplectic.

(6.8d)

Returning to the troublesome case ofSO(2k) with k odd, the only selfcontragredient
irreducible representations are those irreducible representations [λ] for which `(λ) < k. In
the casè (λ) < k − 1 everything goes through as before with all terms contributing to (6.2)
vanishing, so that (6.1a) is still valid and implies (6.3a). Difficulties are encountered only in
the casè (λ) = k−1. In this case, over and above well-behaved distinct, selfcontragredient,
orthogonal irreducible representations [µ], [ν], . . . with `(µ), `(ν), . . . all less thank in



The place of the adjoint representation 5073

(6.2), there now appear the two terms [λ, 1]+ and [λ, 1]−. At first sight the presence of these
irreducible representations seems harmless enough since they are not selfcontragredient and
〈[λ, 1]+ ⊗ {12}, η〉 = 〈[λ, 1]− ⊗ {12}, η〉 = 0. On the other hand they are contragredients
of one another, so that from (3.9) we have〈([λ, 1]+ × [λ, 1]−), η〉 = 1. Hence forSO(2k)

with k odd, (6.1a) must be replaced by:

〈([λ] × [1]) ⊗ {12}, η〉 =
{

0 if `(λ) < k − 1

1 if `(λ) = k − 1.
(6.9)

By means of (6.5) we can therefore only conclude in place of (6.3a) that

〈([λ] ⊗ {2}), [12]〉 = 〈([λ] ⊗ {12}), [2]〉 = 0 if `(λ) < k − 1 (6.10a)

〈([λ] ⊗ {2}), [12]〉 + 〈([λ] ⊗ {12}), [2]〉 = 1 if `(λ) = k − 1. (6.10b)

The last equation has two solutions:

(A) 〈([λ] ⊗ {2}), [12]〉 = 1 and 〈([λ] ⊗ {12}), [2]〉 = 0 (6.11a)

(B) 〈([λ] ⊗ {2}), [12]〉 = 0 and 〈([λ] ⊗ {12}), [2]〉 = 1. (6.11b)

It is not difficult by exploiting the isomorphism betweenSO(6) andSU(4) to show that for
k = 3 the solution (A) applies to all [λ] such that̀ (λ) = 2. Similarly for allSO(2k) with k

odd solution (A) also applies in the case [λ] = [1k−1]. The problem may be unequivocally
resolved by considering the case of the full orthogonal groupO(2k) with k odd and then
restricting to its subgroupSO(2k). The key result takes the form:

Lemma 6.6. The multiplicities of the adjoint irreducible representationθ = [12] and its
associateθ∗ = [12]∗ = [12k−2] in the symmetric and antisymmetric squares of the irreducible
representations [λ] of O(2k) with k odd and`(λ) = k − 1 are given by:

〈[λ] ⊗ {2}, [12]〉 = 0 and 〈[λ] ⊗ {12}, [12]〉 = d(λ) (6.12a)

〈[λ] ⊗ {2}, [12]∗〉 = 1 and 〈[λ] ⊗ {12}, [12]∗〉 = 0. (6.12b)

Proof. First it should be noted that each irreducible representation [λ] of O(2k) with
`(λ) = k−1 is orthogonal and possesses an inequivalent associate irreducible representation
[λ]∗ = [λ, 12] (King et al 1981). Moreover,

[λ] × [12] = [λ · 12] + [λ/1 · 1] + [λ/12]. (6.13)

Recalling lemma 3.2 and noting that [λ · 12] contains [λ, 12] = [λ]∗ with multiplicity one,
it follows that

〈[λ] × [12], [λ]〉 = d(λ) and 〈[λ] × [12], [λ]∗〉 = 1. (6.14)

Since both [λ] and [12] are selfcontragredient lemma 3.5 then implies that

〈[λ] × [λ], [12]〉 = d(λ) and 〈[λ] × [λ], [12]∗〉 = 1 (6.15)

where use has also been made of the fact that [µ]∗ = [0]∗×[µ] for all [µ], where [0]∗ = [12k]
is the irreducible representation ofO(2k) which maps each group element to its determinant,
±1 (King et al 1981). It should be noted that [12]∗ = [12k−2].

The second of the two results in (6.15) can be derived more directly by noting that

[λ] × [λ] =
∑

ξ

[λ/ξ · λ/ξ ]. (6.16)

Recalling that by hypothesis̀(λ) = k − 1, it is clear that even taking modification rules
(King et al 1981) into account, the only way that a term [12]∗ = [12k−2] can arise on
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the right-hand side of (6.16) is ifλ/ξ contains 1k−1 for someξ . Since `(λ) = k − 1
such aξ exists and is unique. In factξ = λ/1k−1 and λ/ξ = 1k−1. Hence as claimed
〈[λ] × [λ], [12]∗〉 = 1.

Turning to symmetrized products, it should be noted first that the difficulties referred to
above which arise in the case ofSO(2k) with k odd, do not arise in the case ofO(2k) with
k odd. In particular for our orthogonal irreducible representationλ = [λ] of O(2k) with
`(λ) = k−1 andω = [1] (6.1a) is valid since now in (6.2) the term [λ, 1] is irreducible and
orthogonal. Thanks to (6.5) this in turn implies the validity of (6.3a). Combining this with
the first part of (6.15) then gives (6.12a). Finally, Littlewood’s theorem III (Littlewood
1958) implies that

〈[λ] ⊗ {2}, [12]∗〉 = 〈{1k−1} ⊗ {2}, {12k−2}〉 (6.17a)

〈[λ] ⊗ {12}, [12]∗〉 = 〈{1k−1} ⊗ {12}, {12k−2}〉. (6.17b)

However, ifk is odd〈{1k−1} ⊗ {2}, {12k−2}〉 = 1, and〈{1k−1} ⊗ {12}, {12k−2}〉 = 0 (King et
al 1981). Combining (6.17) with the second part of (6.15) then gives (6.12b). �

The validity of lemma 6.6 then allows us to complete the analysis ofSO(2k) with k

odd by means of the following:

Proposition 6.7. The multiplicities of the adjoint irreducible representationθ = [12] in the
symmetric and antisymmetric squares of the irreducible representations [λ] of SO(2k) with
k odd and`(λ) < k are given by:

〈[λ] ⊗ {2}, [12]〉 =
{

0 if `(λ) < k − 1

1 if `(λ) = k − 1
(6.18a)

〈[λ] ⊗ {12}, [12]〉 = d(λ). (6.18b)

Proof. As we have already indicated, the case`(λ) < k − 1 gives no problem, and the
required result follows from the use of (6.2) to give (6.1a), the subsequent use of (6.5) to
give (6.3a) and the observation that〈[λ] × [λ], [12]〉 = b(λ) = d(λ). The casè (λ) = k − 1
follows directly from lemma 6.6 and the observation that under the restriction fromO(2k)

to SO(2k) we have [λ] → [λ] for `(λ) = k − 1 and [12]∗ → [12]. �

7. Symmetrized Kronecker squares for the exceptional groups

The techniques of section 6 are also appropriate for use with some of the exceptional
groups. The trick is to find some irreducible representationω which is selfcontragredient,
so that its square contains the adjointθ , and whose weights are multiplicity free, so that
the decomposition ofλ × ω is likely to be multiplicity free for allλ. Even this may not be
enough as we have seen in the case ofSO(2k) with k odd for which the confounding factor
was the occurrence of mutually contragredient pairs of distinct irreducible representations
in λ × ω.

However forG2, whose adjoint irreducible representation is(21), it is helpful to consider
the product of an arbitrary irreducible representation(λ) with the defining irreducible
representationω = ω1 = (1). This irreducible representation(1) is orthogonal and its
weights all have multiplicity one. In addition all the irreducible representations ofG2 are
selfcontragredient. The productλ × ω takes the form (King 1981):

(λ) × (1) =
{

(λ · 1) + (λ · 12) + (λ) if λ1 > 2λ2

(λ · 1) + (λ · 12) if λ1 = 2λ2

(7.1)
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where the Schur function products are to be evaluated as products of characters ofSU(3)

but with any term(µ) = (µ1, µ2) discarded ifµ1 < 2µ2. It can be seen that in all
cases(λ)× (1) decomposes into a sum of distinct, selfcontragredient, orthogonal irreducible
representations. It follows, by the same argument that was applied to (6.2), that:

〈((λ) × (1)) ⊗ {12}, η〉 = 0. (7.2)

As in (6.5) we now obtain

〈((λ) × (1)) ⊗ {12}, η〉
= 〈(λ) ⊗ {12}) × (1) ⊗ {2}), η〉 + 〈(λ) ⊗ {2}) × (1) ⊗ {12}), η〉
= 〈((λ) ⊗ {12}) × (0) + (2)), η〉 + 〈((λ) ⊗ {2}) × (1) + (21)), η〉
= 〈(λ) ⊗ {12}, (2)〉 + 〈(λ) ⊗ {12}, (1)〉 + 〈(λ) ⊗ {2}, (21)〉 (7.3)

where use has been made of the decompositions(1) ⊗ {2} = (0) + (2) and (1) ⊗ {12} =
(1)+(21), and the fact that(λ) is orthogonal. It follows that all three terms on the right-hand
side of (7.3) must be zero. In particular we have

〈(λ) ⊗ {2}, (21)〉 = 0. (7.4)

Combining this with the results of section 4 and expressingb((a1, a2)) in terms ofλ1 and
λ2 we arrive at:

Proposition 7.1. The multiplicities of the adjoint irreducible representationθ = (21) in the
symmetric and antisymmetric squares of the irreducible representation(λ) of G2 are given
by:

〈(λ) ⊗ {2}, (21)〉 = 0 (7.5a)

〈(λ) ⊗ {12}, (21)〉 =
{

2 if λ1 > 2λ2 > 0

1 if λ1 = 2λ2 > 0 or λ1 > 2λ2 = 0.
(7.5b)

Proceeding in exactly the same way forE7 but now takingω = ω7 = (16) we have
(King 1981):

(λ) × (16) = (λ · 12) + (λ · 16) (7.6)

where Schur function products are to be evaluated as products of characters ofSU(8) but
with any term (µ) = (µ1, . . . , µ7) discarded ifµ1 < µ2 + µ3 + µ4 + µ5 − µ6 − µ7.
Once again all terms in the decomposition (7.6) are distinct, selfcontragredient irreducible
representations which are either all orthogonal or all symplectic according aswλ = 0(mod 4)
or 2(mod 4), respectively. Sinceω = (16) is symplectic, it follows as in (6.1b) and (6.1c)
that

〈((λ) × (16)) ⊗ {12}, η〉 = 0 if (λ) is symplectic (7.7a)

〈((λ) × (16)) ⊗ {2}, η〉 = 0 if (λ) is orthogonal. (7.7b)

Using (3.8), the left-hand sides of these two equations may then be expanded as in (6.5) or
(7.3), with the symmetric and antisymmetric squares ofω given by (Wybourne and Bowick
1977)(16)⊗{2} = (216)+ (26) and(16)⊗{12} = (0)+ (2512). This leads to the conclusion
that:

〈(λ) ⊗ {12}, (216)〉 = 0 if (λ) is symplectic (7.8a)

〈(λ) ⊗ {2}, (216)〉 = 0 if (λ) is orthogonal. (7.8b)

By making use of (3.6) and of proposition 4.2, as applied toE7, we can infer the following:
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Proposition 7.2. The multiplicities of the adjoint irreducible representationθ = (216) in
the symmetric and antisymmetric squares of the irreducible representations(λ) of E7 are
given by:

〈(λ)〉 ⊗ {2}, (216)〉 =
{

0 if (λ) is orthogonal

b((λ)) if (λ) is symplectic
(7.9a)

〈(λ) ⊗ {12}, (216)〉 =
{

b((λ)) if (λ) is orthogonal

0 if (λ) is symplectic.
(7.9b)

This completes the happy part of the story regarding the exceptional groups. In the
case of bothF4 and E8 it is not possible to find anyω such that for all irreducible
representationsλ the decomposition of the productλ × ω is multiplicity free. The best
that can be done is to takeω = ω1 = (1) in F4 andω = ω1 = (217) in E8. The fact that
these irreducible representations have zero weights(0) the multiplicities of which are two
and eight, respectively, ensures that in almost all cases

〈(λ × ω1) ⊗ {12}, η〉 6= 0 (7.10)

even though all irreducible representations ofF4 andE8 are orthogonal. This is analogous
to the appearance of a non-vanishing term in (6.9) forSO(2k) with k odd. It thwarts
our attempt to use (3.8) and the symmetrized Kronecker squares of(1) to separate
unambiguously the multiplicities ofθ in λ × λ into contributions toλ ⊗ {2} andλ ⊗ {12}.
Nonetheless, on the basis of our accumulated data, we are tempted to make the following
conjecture.

Conjecture 7.3. The multiplicities of the adjoint irreducible representationθ in the
symmetric and antisymmetric squares of the irreducible representationsλ of F4 and E8

are given by:

〈λ ⊗ {2}, θ〉 = 0 (7.11a)

〈λ ⊗ {12}, θ〉 = b(λ). (7.11b)

The case ofE6 appears to be intractable for a combination of reasons. Firstly it does
not possess a selfcontragredient irreducible representation whose weights are multiplicity
free. Indeed its simplest selfcontragredient irreducible representation is the adjoint, whose
zero weight has multiplicity given by the rank 6. This implies that the techniques used for
G2 for example will not lead to a unique resolution of the multiplicity problem. In this
sense it is analogous toF4 andE8. However, it is worse since the productsλ × ω contain
irreducible representations which are not selfcontragredient even when bothλ and ω are
orthogonal. In factE6 is more closely related toSU(k + 1) which we have seen required
rather special treatment. In this case we are tempted, on the basis it has to be said of very
little data, to conjecture:

Conjecture 7.4. Letλ andθ be an arbitrary finite-dimensional selfcontragredient irreducible
representation and the adjoint irreducible representation, respectively, ofE6. Then

〈λ ⊗ {2}, θ〉 =
{

1
2b(λ) if b(λ) is even
1
2(b(λ) − 1) if b(λ) is odd

〈λ ⊗ {12}, θ〉 =
{

1
2b(λ) if b(λ) is even
1
2(b(λ) + 1) if b(λ) is odd.
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